Tylosin polyketide synthase module 3: stereospecificity, stereoselectivity and steady-state kinetic analysis of β-processing domains via diffusible, synthetic substrates.

نویسندگان

  • William D Fiers
  • Greg J Dodge
  • Yang Li
  • Janet L Smith
  • Robert A Fecik
  • Courtney C Aldrich
چکیده

Polyketide synthase (PKS) β-processing domains are responsible for much of the stereochemical complexity of polyketide natural products. Although the importance of β-processing domains has been well noted and significantly explored, key stereochemical details pertaining to cryptic stereochemistry and the impact of remote stereogenic centers have yet to be fully discerned. To uncover the inner workings of ketoreductases (KR) and dehydratases (DH) from the tylosin pathway a didomain composed of TylDH3-KR3 was recombinantly expressed and interrogated with full-length tetraketide substrates to probe the impact of vicinal and distal stereochemistry. In vitro product isolation analysis revealed the products of the cryptic KR as d-alcohols and of the DH as trans-olefins. Steady-state kinetic analysis of the dehydration reaction demonstrated a strict stereochemical tolerance at the β-position as d-configured substrates were processed more than 100 times more efficiently than l-alcohols. Unexpectedly, the kcat/KM values were diminished 14- to 45-fold upon inversion of remote ε- and ζ-stereocenters. This stereochemical discrimination is predicted to be driven by a combination of allylic A1,3 strain that likely disfavors binding of the ε-epimer and a loss of electrostatic interactions with the ζ-epimer. Our results strongly suggest that dehydratases may play a role in refining the stereochemical outcomes of preceding modules through their substrate stereospecificity, honing the configurational purity of the final PKS product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases.

Table 1 classifies the KR domains in the PKSs reviewed in [4] and the amphotericin PKS. Fig. 4 shows the ClustalW-generated alignments of A and B-type KR domains. A-type KRs are above the gap, B-type below. In fatty acid and polyketide biosynthesis, dehydration of a β-hydroxyacyl chain normally forms a trans double bond. Fig. 5 shows alignments of the 88-103 region and the 134-149 region in KR ...

متن کامل

Polyketide Intermediate Mimics as Probes for Revealing Cryptic Stereochemistry of Ketoreductase Domains

Among natural product families, polyketides have shown the most promise for combinatorial biosynthesis of natural product-like libraries. Though recent research in the area has provided many mechanistic revelations, a basic-level understanding of kinetic and substrate tolerability is still needed before the full potential of combinatorial biosynthesis can be realized. We have developed a novel ...

متن کامل

Genetic analysis of polyketide synthase and peptide synthase genes of ‎cyanobacteria as a mining tool for new pharmaceutical compounds

Cyanobacteria are considered a promising source for new ‎pharmaceutical lead compounds and a large number of chemically diverse and ‎bioactive metabolites have been obtained from cyanobacteria. Despite of ‎several worldwide studies on prevalence of NRPSs and PKSs among the ‎cyanobacteria, none of them included Iranian cyanobacteria of Kermanshah ‎province. Therefore, the aim of this study was t...

متن کامل

Substrate Controlled Divergence in Polyketide Synthase Catalysis

Biochemical characterization of polyketide synthases (PKSs) has relied on synthetic substrates functionalized as electrophilic esters to acylate the enzyme and initiate the catalytic cycle. In these efforts, N-acetylcysteamine thioesters have typically been employed for in vitro studies of full PKS modules as well as excised domains. However, substrate engineering approaches to control the cata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2015